期刊专题

10.3969/j.issn.1006-2475.2021.09.007

基于分解和向量的多目标鲨鱼优化算法

引用
为了提高多目标鲨鱼算法在收敛速度和解集的分布性,提出一种基于分解和向量的多目标鲨鱼优化算法(DVMOS-SO).首先针对基本鲨鱼算法收敛性和多样性难以平衡的问题,通过在精英集采过程中,用参考向量计算角度惩罚距离标量值来平衡目标空间中解的收敛性和多样性.除此之外,针对基本鲨鱼算法在迭代后期易早熟收敛,陷入局部最优的缺陷,采用高斯变异策略重新初始化粒子,同时在精英解集中采用多项式变异来增加种群的多样性.最后,为了验证本文所提算法的有效性,将本文所提的DVMOSSO算法与NSGAII-DS、MOEA/D、MMOPSO、MOSSO和dMOSSO算法在标准测试函数上进行对比实验,实验结果表明本文所提算法具有良好的收敛性和分布性,算法收敛精度更高,寻优能力更强.

鲨鱼优化算法、精英解集、分解、向量、重新初始化、多项式变异

TP306(计算技术、计算机技术)

国家自然科学青年基金资助项目61503002

2021-09-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

43-50

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2021,(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn