期刊专题

10.3969/j.issn.1006-2475.2021.09.003

基于DCN-SERes-YOLOv3的人脸佩戴口罩检测算法

引用
2020年新冠疫情爆发,佩戴口罩是有效抑制疫情反弹的重要措施之一,研究利用机器视觉技术检测人脸是否佩戴口罩有重要的现实意义.本文针对视频图像中人脸佩戴口罩时存在遮挡、检测目标较小、特征信息不明显、目标靠近群体不易识别等问题,提出一种基于DCN-SERes-YOLOv3的人脸佩戴口罩检测算法.首先,采用ResNet50与YOLOv3相结合的方式,将主干网络替换为ResNet50残差网络,为了平衡模型的精度与速度,对残差块中的卷积层改进并加入平均池化层,降低模型的损失与复杂度,提高检测速度;其次,将ResNet50残差网络中第4个残差块的常规卷积替换为DCN可变形卷积,提高模型适应人脸佩戴口罩时发生几何形变的能力;最后,引入SENet通道注意力机制,增强特征信息的表达能力.实验结果表明,本文算法的平均精度值高达95.36%,比传统YOLOv3算法提高了约4.1个百分点,且检测速度提高了11.7 fps,本文算法提高了检测人脸佩戴口罩任务的精度与速度,有较好的应用前景.

口罩佩戴、YOLOv3算法、ResNet50残差网络、通道注意力机制、可变形卷积、疫情防控

TP391.41(计算技术、计算机技术)

广西创新驱动发展专项桂科AA17202032-2

2021-09-22(万方平台首次上网日期,不代表论文的发表时间)

共10页

12-20,30

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2021,(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn