期刊专题

10.3969/j.issn.1006-2475.2021.04.020

基于深度强化学习的黑盒对抗攻击算法

引用
针对图像识别领域中的黑盒对抗攻击问题,基于强化学习中DDQN框架和Dueling网络结构提出一种黑盒对抗攻击算法.智能体通过模仿人类调整图像的方式生成对抗样本,与受攻击模型交互获得误分类结果,计算干净样本和对抗样本的结构相似性后获得奖励.攻击过程中仅获得了受攻击模型的标签输出信息.实验结果显示,攻击在CIFAR10和CIFAR100数据集上训练的4个深度神经网络模型的成功率均超过90%,生成的对抗样本质量与白盒攻击算法FGSM相近且成功率更有优势.

对抗样本、黑盒攻击、深度学习、强化学习

TP391.4(计算技术、计算机技术)

2021-05-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

117-121

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2021,(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn