期刊专题

10.3969/j.issn.1006-2475.2019.06.015

基于AlexNet算法的道路能见度估测方法

引用
本文采用AlexNet神经网络算法构建一个高速公路能见度识别的框架,通过对道路摄像头图像的采集,对图像进行标注、对AlexNet算法进行训练,提取图像能见度特征,构建能见度等级识别模型,实时接入道路摄像头图像,实现能见度值的估测.通过对安徽省高速公路42个监控摄像机进行图像的采集,抽取标注有能见度值的15万余幅样本,进行能见度识别结果分析,结果显示平均识别率达到78.02%,其中有14个站点的识别率超过90%,21个站点的识别率在80%以上.基于AlexNet算法的道路能见度估测方法能够满足道路能见度实时性和识别准确率的要求,可以作为能见度仪未安装地区的能见度辅助监测方法,同时对于光照变化、远近距离等都具有良好的鲁棒性.

AlexNet算法、图像识别、卷积神经网络、能见度

TP301.6(计算技术、计算机技术)

国家自然科学基金资助项目41575155;江苏省气象局北极阁基金资助项目BJG201707

2019-06-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

87-91,103

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2019,(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn