期刊专题

10.3969/j.issn.1006-2475.2019.04.009

基于深度Q网络的仿人机器人步态优化

引用
为实现仿人机器人快速稳定的行走,在满足有效参数组合的条件下,提出一种基于深度强化学习的步行参数训练算法以优化机器人步态.首先,从环境中捕获机器人步态模型参数作为DQN的输入;然后,用DQN来拟合机器人行走产生的状态-动作值函数;最后,通过动作选择策略选择当前机器人执行的步态动作,同时产生奖励函数达到更新DQN的目的.选择NAO仿真机器人为实验对象,在RoboCup3D仿真平台上进行实验,结果证明在此算法下,NAO仿人机器人可以获得稳定的双足步行.

仿人机器人、深度强化学习、DQN、步态优化、RoboCup3D

TP242.6(自动化技术及设备)

江苏省水利厅科技计划项目2017003ZB

2019-05-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

47-51,58

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2019,(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn