期刊专题

10.3969/j.issn.1006-2475.2019.02.009

基于CNN的人体姿态识别

引用
姿态识别是人机交互中重要的研究课题之一,随着机器学习与神经网络的发展,研究的方式和成果趋于多样化,姿态识别的应用价值也日趋广泛.本文通过构建卷积神经网络模型,该模型共有11层,在对采样的数据集中5种人体姿态进行卷积与池化操作,最后进入全连接层进行分类,从而完成对数据集的训练和识别.结果显示,相较于机器学习方法,该模型的识别性能更加优秀,且免去了复杂的特征提取方式设计,让网络自身提取特征进行识别分类,效果更好.

人机交互、姿态识别、CNN

TP391(计算技术、计算机技术)

国家自然科学基金青年科学基金资助项目61103017

2019-04-09(万方平台首次上网日期,不代表论文的发表时间)

共7页

49-54,92

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2019,(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn