期刊专题

10.3969/j.issn.1006-2475.2017.12.022

基于模糊C均值改进算法和ANFIS的蓄电池SOC预测

引用
蓄电池剩余电量预测作为蓄电池智能管理系统的核心部分,为合理控制蓄电池的充放电情况、延长蓄电池的使用寿命提供了判据.然而蓄电池剩余电量的影响因素复杂、预测难度较大.针对这一挑战性课题,提出一种基于改进的模糊C均值聚类和自适应模糊神经推理系统(ANFIS)的预测算法,采用减法聚类和加权模糊C均值聚类生成初始模糊推理系统,通过梯度下降法和最小二乘法混合算法对自适应模糊神经网络中的前件参数和后件参数进行训练,建立非线性预测模型.仿真结果表明,改进的聚类算法解决了传统模糊C均值聚类稳定性差以及对噪声点、错误点敏感的缺点,加快了收敛速度,在此基础上建立的蓄电池剩余电量预测模型也具有较高的预测精度.

自适应神经模糊推理系统、模糊C均值聚类、减法聚类、剩余电量

TP18(自动化基础理论)

2018-01-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

111-116

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2017,(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn