10.3969/j.issn.1006-2475.2016.12.005
一种基于多目标的软件需求选择群智能优化算法
软件版本更新时的需求选择具有极大难度,将对下一个版本的软件的成本以及客户满意度产生一定程度的影响。对于软件开发者而言,亟需达到同时解决2个矛盾的目标:1)下个版本选择需求的总成本最低;2)让那些对于公司有着不同重要性又有着自己不同看法的客户尽可能满意。值得注意的是,需求之间有着多种约束关系。这种问题被称为下个版本问题( NRP)。针对这一问题,已出版的学术文献中缺乏对所有约束类型的综合考虑,且多数研究将该问题简化为单纯的单目标优化问题。本文提出一种基于多目标群的软件需求智能优化算法,弥补现有研究的不足,借鉴鸟类的繁殖匹配策略,可以根据问题规模调整参数,从而更好地适用于不同规模的问题。该算法首先产生一批初始种群,然后根据不同的分类进行迭代,再通过帕累托提出的多目标评价方法选择出优秀的个体,调整种群分类后继续迭代,最终通过多次迭代获取一组需求选择方案。研究结果表明,该算法能产生高质量的有效解决方案。通过与不同的算法比较研究可以得知,该方法产生的方案比其他相关研究产生的方案更为优秀。
下个版本问题、多目标智能算法、软件需求选择、群智能、鸟类匹配策略
TP391(计算技术、计算机技术)
2017-01-16(万方平台首次上网日期,不代表论文的发表时间)
共8页
22-28,33