10.3969/j.issn.1006-2475.2015.07.005
一种新的融合情景的美食推荐算法
针对传统协同过滤推荐算法不适用于情景因素,严重影响用户行为的这类场景,提出一种融合情景的推荐算法,并将该算法应用于美食推荐。首先,运用由情景属性构造向量表示情景,将情景信息作为一个重要因素添加到兴趣模型中,从而产生U-I-C兴趣模型。根据用户在不同情景下使用方式的不同,重新创建当前用户与各情景相对应的子用户,得到以情景作为标识的用户-项目评分矩阵。针对融合情景的兴趣模型易产生数据稀疏问题,设计利用改进的W-SlopeOne算法对未知评分进行填充;并通过对相似度公式进行优化,进而更加准确地找到当前用户的近邻,为用户提供更加有效的推荐服务。最后,通过实验验证该算法的有效性。
兴趣模型、推荐算法、协同过滤、情景信息、相似度公式
TP311(计算技术、计算机技术)
2015-08-06(万方平台首次上网日期,不代表论文的发表时间)
共6页
20-24,30