期刊专题

10.3969/j.issn.1006-2475.2015.03.010

一种改进的k-means文本聚类优化方法

引用
提出一种改进的k-means文本聚类优化方法k-meansSC,将待聚类文档集分词处理后提取主要词条集,并分别采用布尔函数、TFIDF函数表示文本特征向量,通过实验对比它们各自的优缺点。同时基于该词条集构建支持度矩阵与置信度矩阵,以此定义相似度计算公式,并在不同聚类个数条件下详细分析了该公式与其他距离计算公式的迭代次数及错误函数的表现情况,实验结果表明,在一定条件下采用TFIDF型文本特征向量能有效地提高运行效率及聚类有效性。

k-means、相似度、文本聚类、支持度、置信度

TP311(计算技术、计算机技术)

江苏省自然科学基金资助项目BK2012209;苏州市科技发展计划项目SYG201409

2015-04-10(万方平台首次上网日期,不代表论文的发表时间)

共5页

48-51,56

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2015,(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn