期刊专题

10.3969/j.issn.1006-2475.2015.03.009

基于累积正样本的偏斜数据流集成分类方法

引用
针对现有处理偏斜数据流的方法存在过拟合或者未充分利用现有数据这一问题,提出一种基于累积正样本的偏斜数据流集成分类方法EAMIDS。该算法把目前达到的所有数据块的正样本收集起来生成集合AP,然后采用KNN算法和Over-sampling方法来平衡数据块的类分布。当基分类器数量超过最大值时,根据F-Measure值来更新集成分类器。通过在模拟数据集SEA和SPH上的实验,与IDSL算法和SMOTE算法相比,表明EAMIDS具有更高的准确率。

偏斜数据流、累积正样本、集成分类器、概念漂移

TP391(计算技术、计算机技术)

西北工业大学基础研究基金资助项目JC201273

2015-04-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

41-47

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2015,(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn