期刊专题

10.3969/j.issn.1006-2475.2015.03.006

基于密度划分的离群点检测算法

引用
目前,大部分离群点检测算法需要人工输入参数,不能同时检测出全局和局部离群点,不能有效处理密度不均匀数据。针对这些问题,提出一种基于密度划分的离群点检测算法DD-DBSCAN。主要创新包括:1)运用最小生成树的方法,新定义簇密度概念,将数据录入后划分成密度不等的簇,使算法能够处理密度分布不均匀的数据;2)采用“分而治之”的思想,对经过划分的数据集分别进行离群点检测,使得算法能够同时处理全局和局部离群点;3)通过在各个簇中自适应地计算所需参数值,算法不再需要人工输入参数(聚类半径(Eps)等)。通过在2D模拟数据集和Iris真实数据集上的实验表明,与DBSCAN算法比较,本文算法具有更高的覆盖率和正确率。

数据挖掘、聚类、离群点检测

TP301(计算技术、计算机技术)

西北工业大学基础研究基金资助项目JC201273

2015-04-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

26-32

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2015,(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn