期刊专题

10.3969/j.issn.1006-2475.2015.03.004

基于近邻边缘检测的支持向量机

引用
针对标准支持向量机方法需要存储、计算和处理核矩阵而学习效率很低,不能有效处理较大规模数据挖掘的问题,提出一种基于近邻边缘检测的支持向量机方法( SVM Method Based on Neighbor Edge Detection, ED_SVM)。该方法将近邻边缘检测技术引入SVM的训练过程,即首先对数据进行划分,选择混合类样本,通过边缘检测技术提取其中位于近似最优分类边界附近的含有较多重要支持向量信息的样本,构成新的小规模训练集,以在压缩训练集的同时保持原始支持向量信息的分布特性;并在新构成的训练集上训练标准SVM,在提高SVM学习效率的同时得到优秀的泛化性能。实验结果表明,本文提出的ED_SVM方法能够同时获得较高的测试精度和学习效率。

支持向量机、边缘检测、支持向量、泛化性能、学习效率、ED_SVM算法

TP18(自动化基础理论)

2015-04-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

15-19,25

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2015,(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn