期刊专题

10.3969/j.issn.1006-2475.2015.01.017

一种基于深度学习的表情识别方法

引用
针对人脸表情识别鲁棒性差,容易受身份信息干扰的问题,提出一种具有局部并行结构的深度神经网络识别算法。首先使用稀疏自编码算法训练得到不同尺度的卷积核,然后提取卷积核特征并作池化处理,使特征具有一定的平移不变性,最后采用与表情相关的7个并行的4层网络得到最终的分类结果。实验结果表明,在标准的人脸表情识别库上进行独立测试时,本文提出的局部并行深度神经网络的表情识别方法对测试集的人不出现在训练集中的情况有较好表现,相比其他算法更具有实用性。

表情识别、深度学习、神经网络、稀疏自编码

TP391.4(计算技术、计算机技术)

2015-02-03(万方平台首次上网日期,不代表论文的发表时间)

共4页

84-87

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2015,(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn