10.3969/j.issn.1006-24752.0141.2.005
基于极限学习机的股票价格预测
极限学习机( Extreme Learning Machine , ELM)是一种新型的单馈层神经网络算法,克服了传统的误差反向传播方法需要多次迭代,算法的计算量和搜索空间大的缺点,只需要设置合适的隐含层节点个数,为输入权和隐含层偏差进行随机赋值,一次完成无需迭代。研究表明股票市场是一个非常复杂的非线性系统,需要用到人工智能理论、统计学理论和经济学理论。本文将极限学习机方法引入股票价格预测中,通过对比支持向量机( Support Vector Machine , SVM)和误差反传神经网络( Back Propagation Neural Network , BP神经网络),分析极限学习机在股票价格预测中的可行性和优势。结果表明极限学习机预测精度高,并且在参数选择及训练速度上具有较明显的优势。
极限学习机、股票价格、预测模型、支持向量机、神经网络
TP181(自动化基础理论)
2015-01-22(万方平台首次上网日期,不代表论文的发表时间)
共4页
19-22