期刊专题

10.3969/j.issn.1006-2475.2009.01.017

一种改进的k-means算法

引用
在聚簇方法中,k-means算法是最著名和最常用的划分法之一.该算法适合对海量数据进行聚类,对球状、凸形分布的数据具有很好的聚类效果.但该算法依赖聚类中心的初始分布、距离计算的复杂性大,这些对聚类结果及效率会产生很大的影响.为了降低对初始聚类中心的依赖和算法的时间开支,提出了一种改进算法,该算法汲取了k-medoids轮换法及优化后的采用三角形三边关系定理的k-means算法的优点.实验表明,该改进算法比原k-means算法具有更好的聚类效果及更高的效率.

k-means、三角形三边关系定理、k-medoids轮换法

TP311(计算技术、计算机技术)

2009-03-13(万方平台首次上网日期,不代表论文的发表时间)

共4页

56-59

暂无封面信息
查看本期封面目录

计算机与现代化

1006-2475

36-1137/TP

2009,(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn