10.7544/issn1000-1239.202220295
多项正则化约束的伪标签传播优化脑电信号聚类
作为一种非侵入式分析载体,脑电信号目前被广泛应用于脑-机接口、医疗辅助诊断及康复领域,但这些应用通常依赖需要完整标签的有监督分析技术,如分类.随着无标签脑电信号的与日俱增,现有的有监督方法不能有效解决无标签脑电信号分析问题,也在一定程度上限制了无标签脑电信号这类新型数据的应用拓展.为了解决无标签脑电信号的无监督分析问题,提出了一种基于多项正则化约束的伪标签传播优化聚类模型.该模型通过同时优化学习伪标签传播矩阵、脑电信号相似度邻接矩阵、标签分类器的方式实现聚类.将提出的脑电信号聚类模型转化为一个多目标优化问题,并提出了一种基于梯度下降策略的聚类算法EEGapc(electroencephalogram clustering with pseudo label propagation).该算法不仅充分考虑了脑电信号之间的相关性及脑电信号间的信息传递,还能快速收敛到局部最优.在 14个真实脑电信号数据集上的实验结果表明,提出的EEGapc脑电信号聚类算法比现有的 8种聚类算法性能更好,且在平均NMI(normalized mutual information),ARI(adjusted rand index),F-score,kappa 这 4个指标上,EEGapc与现有的 8种聚类算法相比,分别至少提升了86.88%,58.01%,6.29%,61.17%.
脑电信号聚类、伪标签传播、邻接矩阵优化、伪标签分类器、多目标优化
61
TP391(计算技术、计算机技术)
2024-01-20(万方平台首次上网日期,不代表论文的发表时间)
共16页
156-171