10.7544/issn1000-1239.202220562
面向新一代国产异构众核处理器的数据流计算系统
如今,科学研究已从计算科学时代进入数据科学时代.从海量数据中发现规律和突破科学发展瓶颈是数据科学范式的主要目标.与此同时,高性能计算机(HPC)也越来越重视智能算力,在传统高性能计算方法的基础上融合人工智能算法(HPC+AI),更有利于在数据科学时代解决实际问题,并能充分发挥高性能计算机的智能算力.不过,在国产HPC系统——特别是面向由新一代国产异构众核处理器sw26010pro构建的HPC系统——上支撑 HPC+AI领域应用,则面临着诸多挑战.提出了一种面向国产异构众核处理器的数据流计算系统swFLOWpro,支持使用TensorFlow接口构建数据流程序,实现对用户透明的众核加速,并实现了面向全处理器视角的两级并行策略.经测试,系统针对典型核心计算,单核组众核加速比最高可达545倍、典型模型众核加速比最高可达346倍,全片6核组并行执行ResNet50模型训练,对比单核组加速比达到4.96倍,并行效率82.6%.实验表明,swFLOWpro能够支持以深度学习为代表的数据流程序在国产异构众核处理器上的高效运行.
数据流、深度学习、异构众核、swFLOWpro系统、高性能计算
60
TP319(计算技术、计算机技术)
2023-12-08(万方平台首次上网日期,不代表论文的发表时间)
共13页
2405-2417