期刊专题

10.7544/issn1000-1239.202220317

基于上下文感知并面向多样性的API推荐

引用
软件开发者在开发过程遇到应用程序编程接口(application programming interface,API)使用问题时,通常希望能够得到有效的API使用模式建议,从而帮助其学习和使用.传统的API推荐方法会挖掘和学习代码库中API的使用知识,然后给开发者推荐与上下文相关的API.然而由于上下文信息表征不够充分,以及推荐列表中冗余项和同质化内容的出现影响了推荐性能.针对这一问题,构建项目和方法与API的API层次调用图(API hierarchy call graph,AHCG)模型以更好地表达API上下文关系,充分利用API结构信息和语义信息来减少冗余项和降低同质化内容被推荐的可能性,进而提出基于上下文感知并面向多样性的 API 推荐(context-aware based API recommendation with diversity,CAPIRD)方法.该方法中引入相关性度量和关联性度量,最大限度地保留相关结果,同时平衡已选API与候选API的关联性,以尽可能挖掘到合理的初选API列表.最后结合最大边缘相关算法,在标准模式数据集上学习相关性和关联性的最佳权重组合,并进行多样性重排推荐.在2210个项目构成的3类数据集上进行实验并验证推荐性能,实验结果表明,CAPIRD在基于上下文的API推荐场景下能够有效提高推荐性能.在所有数据集的API推荐中,平均精度(mean average precision,MAP)指标平均提升值约9%,在Top-1的推荐中,成功率(success rate)指标平均提升约13%.

API推荐、API使用模式、图模型、多样性推荐、重排

60

TP391(计算技术、计算机技术)

2023-12-08(万方平台首次上网日期,不代表论文的发表时间)

共13页

2335-2347

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

60

2023,60(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn