期刊专题

10.7544/issn1000-1239.202330262

多层次知识自蒸馏联合多步骤训练的细粒度图像识别

引用
细粒度图像识别具有类内差异大、类间差异小的特点,在智能零售、生物多样性检测和智慧交通等领域中有着广阔的应用场景.提取到判别性强的多粒度特征是提升细粒度图像识别精度的关键,而已有工作大多只在单一层次进行知识获取,忽略了多层次信息交互对于提取鲁棒性特征的有效性.另外一些工作通过引入注意力机制来找到局部判别区域,但这不可避免地增加了网络复杂度.为了解决这些问题,提出了多层次知识自蒸馏联合多步骤训练的细粒度图像识别(multi-level knowledge self-distillation with multi-step training for fine-grained image recognition,MKSMT)模型.该模型首先在网络浅层进行特征学习,然后在深层网络再次进行特征学习,并利用知识自蒸馏将深层网络知识迁移至浅层网络中,优化后的浅层网络又能帮助深层网络提取到更鲁棒的特征,进而提高整个模型的性能.实验结果表明,MKSMT在CUB-200-2011、NA-Birds和Stanford Dogs这 3个公开细粒度图像数据集上分别达到了 92.8%、92.6%和91.1%的分类准确度,性能优于当前大部分细粒度识别算法.

细粒度图像识别、知识自蒸馏、Swin Transformer、特征学习、鲁棒特征

60

TP391(计算技术、计算机技术)

2023-08-22(万方平台首次上网日期,不代表论文的发表时间)

共12页

1834-1845

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

60

2023,60(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn