期刊专题

10.7544/issn1000-1239.202330210

基于自步学习的开放集领域自适应

引用
领域自适应的目的是将从源领域获得的知识泛化到具有不同数据分布的目标领域.传统的领域自适应方法假设源域和目标域的类别是相同的,但在现实世界的场景中并非总是如此.为了解决这个缺点,开放集领域自适应在目标域中引入了未知类以代表源域中不存在的类别.开放集领域自适应旨在不仅识别属于源域和目标域共享的已知类别样本,还要识别未知类别样本.传统的领域自适应方法旨在将整个目标域与源域对齐以最小化域偏移,这在开放集领域自适应场景中不可避免地导致负迁移.为了解决开放集领域自适应带来的挑战,提出了一种基于自步学习的新颖框架SPL-OSDA(self-paced learning for open-set domain adaptation),用于精确区分已知类和未知类样本,并进行领域自适应.为了利用未标记的目标域样本实现自步学习,为目标域样本生成伪标签,并为开放集领域自适应场景设计一个跨领域混合方法.这种方法最大程度地减小了伪标签的噪声,并确保模型逐步从简单到复杂的例子中学习目标域的已知类特征.为了提高模型在开放场景的可靠性以满足开放场景可信人工智能的要求,引入了多个准则以区分已知类和未知类样本.此外,与现有的需要手动调整超参数阈值以区分已知类和未知类的开集领域自适应方法不同,所提方法可以自动调整合适的阈值,无需在测试过程中进行经验性调参.与经验性调整阈值相比,所提的模型在不同超参数及实验设定下都表现出了良好的鲁棒性.实验结果表明,与各种最先进的方法相比,所提方法在不同的基准测试中始终取得卓越的性能.

物体识别、迁移学习、无监督领域自适应、开放集领域自适应、自步学习

60

TP391(计算技术、计算机技术)

2023-08-22(万方平台首次上网日期,不代表论文的发表时间)

共16页

1711-1726

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

60

2023,60(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn