期刊专题

10.7544/issn1000-1239.20210693

结合用户长短期兴趣与事件影响力的事件推荐策略

引用
事件社交网络的快速发展引起的信息过载问题是当前面临的主要挑战,深度学习等技术可从大量的数据中挖掘潜在的关联信息,从而有效应对该问题.同时,有研究表明用户兴趣在长期和短期的时序上具有不同的特征模式,深度挖掘用户的时序特征和兴趣可有效地为用户提供个性化的事件推荐信息.基于此,提出一种将用户长短期兴趣与事件影响力相结合的推荐策略.通过带注意力机制的图神经网络和长短期记忆网络获取用户的长短期兴趣,同时,对候选事件构建针对目标用户的影响力.根据用户长短期兴趣和事件影响力预测目标用户的参与概率,最终通过排序后的参与概率向用户推荐TOP-K兴趣事件.实验结果表明,所提推荐模型在多个指标上均有所改善,其推荐性能优于已有对比模型,具备很好的推荐效果.

基于事件的社交网络、个性化事件推荐、长短期兴趣、图神经网络、注意力机制

59

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;江西省自然科学基金

2022-12-29(万方平台首次上网日期,不代表论文的发表时间)

共13页

2803-2815

相关文献
评论
暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

59

2022,59(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn