期刊专题

10.7544/issn1000-1239.20210117

最优聚类的k-匿名数据隐私保护机制

引用
基于聚类的k-匿名机制是共享数据脱敏的主要方法,它能有效防范针对隐私信息的背景攻击和链接攻击.然而,现有方案都是通过寻找最优k-等价集来平衡隐私性与可用性.从全局看,k-等价集并不一定是满足k-匿名的最优等价集,隐私机制的可用性最优化问题仍然未得到解决.针对上述问题,提出一种基于最优聚类的k-匿名隐私保护机制.通过建立数据距离与信息损失间的函数关系,将k-匿名机制的最优化问题转化为数据集的最优聚类问题;然后利用贪婪算法和二分机制,寻找满足k-匿名约束条件的最优聚类,从而实现k-匿名模型的可用性最优化;最后给出了问题求解的理论证明和实验分析.实验结果表明该机制能最大程度减少聚类匿名的信息损失,并且在运行时间方面是可行有效的.

隐私保护、k-匿名、聚类优化、信息损失、数据发布

59

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;福建省高校产学合作项目

2022-07-20(万方平台首次上网日期,不代表论文的发表时间)

共11页

1625-1635

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

59

2022,59(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn