期刊专题

10.7544/issn1000-1239.20200985

面向GPU计算平台的神经网络卷积性能优化

引用
图像检测、识别任务已经被应用在越来越多的生产生活场景中,基于卷积神经网络的方法凭借着精度高的特点被广泛应用.但是卷积神经网络存在着权重参数多、对算力要求高的问题,算力有限且型号多样的边缘计算设备使得这些应用在使用中受限.在跨平台上运行高性能代码,以及基于GPU的卷积神经网络优化愈发重要.针对卷积神经网络中的卷积规模和其他通用矩阵乘(general matrix multiplication,GEMM)方法的不足,根据分块规模、分支执行、访存和计算比例,提出了 一种针对卷积神经网络规模优化的GEMM优化方法,将其应用于Winograd算法,并结合算子合并,实现对卷积进一步优化.同时基于遍历的自调优选择性能最优的卷积算子,结合离线编译、内存池、16 b量化、网络规模裁剪等方法,来提升卷积神经网络的性能.最后在AMD V1605B平台上进行实验验证算法的效果,通过和其他GEMM算法以及深度学习网络的性能进行对比,验证了该方法能够获得比GEMM算法和Winograd算法更好的加速效果,并能有效地加速卷积神经网络.

通用矩阵乘、Winograd算法、卷积神经网络、性能优化、GPU

59

TP301(计算技术、计算机技术)

国家重点研发计划;国家重点研发计划;国家重点研发计划;国家自然科学基金;北京市自然科学基金

2022-06-24(万方平台首次上网日期,不代表论文的发表时间)

共11页

1181-1191

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

59

2022,59(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn