10.7544/issn1000-1239.2021.20210999
基于对比约束的可解释小样本学习
不同于基于大规模监督的深度学习方法,小样本学习旨在从极少的几个样本中学习这类样本的特性,其更符合人脑的视觉认知机制.近年来,小样本学习受到很多学者关注,他们联合元学习训练模式与度量学习理论,挖掘查询集(无标记样本)和支持集(少量标记样本)在特征空间的语义相似距离,取得不错的小样本分类性能.然而,这些方法的可解释性偏弱,不能为用户提供一种便于直观理解的小样本推理过程.为此,提出一种基于区域注意力机制的小样本分类网络INT-FSL,旨在揭示小样本分类中的2个关键问题:1)图像哪些关键位置的视觉特征在决策中发挥了重要作用;2)这些关键位置的视觉特征能体现哪些类别的特性.除此之外,尝试在每个小样本元任务中设计全局和局部2种对比学习机制,利用数据内部信息来缓解小样本场景中的监督信息匮乏问题.在3个真实图像数据集上进行了详细的实验分析,结果表明:所提方法INT-FSL不仅能有效提升当前小样本学习方法的分类性能,还具备良好的过程可解释性.
小样本学习;可解释性分析;对比学习;局部描述子;图像识别
58
TP391(计算技术、计算机技术)
国家重点研发计划;国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;教育部长江学者和创新团队发展计划项目;基于MOOC中国的一带一路人才培养的线上线下混合教学支撑信息化平台与服务体系;中国博士后面上项目;中国工程科技知识中心项目;中央高校基本科研项目
2022-01-13(万方平台首次上网日期,不代表论文的发表时间)
共12页
2573-2584