期刊专题

前言

引用
以深度学习为代表的人工智能取得突破性进展,然而海量的参数与复杂的处理机制,使得人类很难追溯与理解推理过程,导致这类端到端的黑箱学习方法不可解释,造成"知其然,不知其所以然".由此引发人们对算法可信性、公平性产生质疑,甚至造成伦理、法律等问题,影响了黑箱人工智能方法在无人驾驶、精准医疗、智能交通等高风险决策工程中的大规模应用.可解释性问题是打开黑箱人工智能方法、构建新一代人工智能理论的关键问题之一.可解释智能学习方法既要给出结果,同时也能提供计算推理过程所形成的证据链.

58

2022-01-13(万方平台首次上网日期,不代表论文的发表时间)

共2页

2571-2572

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

58

2021,58(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn