10.7544/issn1000-1239.2018.20170024
基于结构并行的MRBP算法
BP(back propagation)算法是一种常用的神经网络学习算法,而基于Hadoop集群MapReduce编程模型的BP(MapReduce back propagation,MRBP)算法在处理大数据问题时,表现出良好的性能,因而得到了广泛应用.但是,由于该算法缺乏神经节点之间细粒度结构并行的能力,当遇到数据维度较高、网络节点较多时,性能还显不足.另一方面,Hadoop集群计算节点通信不能由用户直接控制,现有基于集群系统的结构并行策略不能直接用于MRBP算法.为此,提出一种适合于Hadoop集群的结构并行MRBP (structure parallelism based MapReduce back propagation,SP-MRBP)算法,该算法将神经网络各层划分为多个结构,通过逐层并行-逐层集成(layer-wise parallelism,layer-wise ensemble,LPLE)的方式,实现了MRBP算法的结构并行.同时,推导出了SP-MRBP算法和MRBP算法计算时间解析表达式,以此分析了2种算法时间差和SP-MRBP算法最优并行规模.据了解,这是首次将结构并行策略引入MRBP算法中.实验表明,当神经网络规模较大时,SP-MRBP较之原算法,具有较好的性能.
MapReduce模型、结构并行、BP算法、多层神经网络、MRBP算法
55
TP183(自动化基础理论)
国家自然科学基金项目61100066
2018-12-20(万方平台首次上网日期,不代表论文的发表时间)
共12页
1308-1319