期刊专题

10.7544/issn1000-1239.2015.20131757

遗传算法优化回声状态网络的网络流量预测

引用
网络流量预测是网络拥塞控制与网络管理的一个重要问题.网络流量时间序列具有时变、非线性特征,导致传统时间序列预测方法预测精度比较低,无法建立精确的预测模型.回声状态网络(echo state network,ESN)在非线性混沌系统预测与建模方面有着良好的性能,非常适合网络流量的预测.为了提高网络流量的预测精度,提出一种基于遗传算法(genetic algorithm,GA)优化回声状态网络的网络流量非线性预测方法.首先利用回声状态网络对网络流量进行预测;然后利用遗传算法对回声状态网络预测模型中的储备池参数进行优化,提高预测模型的预测精度.通过中国联合网络通信公司辽宁分公司采集的实际网络流量数据进行了仿真验证.与差分自回归滑动平均模型(auto regressive integrated moving average,ARIMA)、Elman神经网络以及最小二乘支持向量机(least square support vector machine,LSSVM)这3种常见预测模型进行了对比,仿真结果表明提出的方法具有更高的预测精度与更小的预测误差,更能刻画网络流量复杂的变化特点.

网络流量、非线性、预测、遗传算法、回声状态网络

52

TP393.1(计算技术、计算机技术)

国家自然科学基金重点项目61034005;辽宁省博士科研启动基金项目20141070

2015-06-19(万方平台首次上网日期,不代表论文的发表时间)

共9页

1137-1145

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

52

2015,52(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn