10.7544/issn1000-1239.2014.20130854
一种基于马尔可夫性质的因果知识挖掘方法
攻击者对网络目标设施的渗透破坏过程往往是渐进的,通过执行多个攻击步骤实现最终目的,如何掌握攻击活动的全貌、重建攻击场景是网络安全态势感知等诸多研究领域面临的主要难题之一.基于因果知识的告警关联分析是复杂事件处理(complex event processing,CEP)技术的主要方法之一,它为识别多步攻击过程、重建攻击场景提供了较好的技术途径.针对告警关联分析中因果知识难以自动获得这一问题,提出了一种基于马尔可夫性质的因果知识挖掘方法.该方法利用马尔可夫链模型对因果知识进行建模,以真实网络中的原始告警流为数据源:首先通过对地址相关的告警事件进行聚类,得到相关性类簇;然后再基于马尔可夫链的无后效性,挖掘各个类簇中不同攻击类型间的一步转移概率矩阵,得到因果知识,并对具有重复步骤的因果知识进行匹配融合,构建因果知识库;最后对所提出的因果知识挖掘方法进行了实验验证和对比分析.结果表明,该方法是可行的.
入侵检测、告警关联、因果知识、数据挖掘、攻击场景
51
TP393.08(计算技术、计算机技术)
国家自然科学基金项目61271252
2014-12-01(万方平台首次上网日期,不代表论文的发表时间)
共12页
2493-2504