期刊专题

一种面向目标检测的部件学习方法

引用
基于部件的目标检测模型主要研究如何利用部件获得目标的局部判别特征,而极少关注部件形式及选取策略对检测性能的影响.首先从特征学习的角度分析了部件选取策略对学习弱部件模型的影响,提出了一种自适应的部件学习方法.该方法无须部件层标注,在搜索判别部件的同时利用样本自身的图像分布特点自动定位到语义相关的部件,从而保证特征学习的判别性和有效性.其次,针对训练集的标注样本经常存在不完整或部分遮挡等事实,提出了一种简单有效的部件剪技策略以降低噪声部件的比例.实验面向PASCAL VOC 2007/2010数据集评估了4种形式的部件模型.实验结果验证了自适应部件学习算法在模型检测上的有效性,同时表明了弱部件模型经过剪技策略优化后具有更快的学习收敛性.

部件学习、可变形部件模型、目标检测、弱监督学习、颜色/纹理分布

50

TP391.41(计算技术、计算机技术)

国家自然科学基金项目60873047,61173036

2013-10-21(万方平台首次上网日期,不代表论文的发表时间)

共12页

1902-1913

相关文献
评论
暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

50

2013,50(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn