期刊专题

多文档文摘语义单元自动去噪器的监督学习方法

引用
多文档文摘的处理对象是存在噪音的文档集.现有文摘系统一般使用由人工设定阈值的固定阈值去噪器.但通过实验可见,不同文摘算法本身的抗噪能力各有高低,最优阈值随文档集、文摘算法、文本表示方法而改变,人工设定的固定阈值无法达到较好的通用性和去噪效果.为此,提出一种用于生成自动去噪器的监督学习方法,通过从人工文摘中自动获得标注信息,为语义单元提取多个特征,训练语义单元分类器而构成自动去噪器.可通用于不同文本表示所生成的语义单元,在不同多文档文摘系统的预处理阶段为任意文档集自动去除噪音语义单元.实验表明,该监督学习方法所生成的自动去噪器在不同文档集、文摘算法和文本表示方法下具有通用性,较好的去噪性能使各文摘算法的速度及所提取文摘的质量得到不同程度的提升.

自动去噪、监督学习、多文档文摘、文本表示、预处理

50

TP391(计算技术、计算机技术)

国家自然科学基金项目61105056;中央高校基本科研业务费专项基金项目2011JBM231

2013-05-17(万方平台首次上网日期,不代表论文的发表时间)

共10页

873-882

相关文献
评论
暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

50

2013,50(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn