期刊专题

通用集成学习算法的构造

引用
集成学习算法的构造属于机器学习领域的重要研究内容,尽管弱学习定理指出了弱学习算法与强学习算法是等价的,但如何构造好的集成学习算法仍然是一个未得到很好解决的问题.Freund和Schapire提出的AdaBoost算法和Schapire和Singer提出的连续AdaBoost算法部分解决了该问题.提出了一种学习错误定义,以这种学习错误最小化为目标,提出了一种通用的集成学习算法,算法可以解决目前绝大多数分类需求的学习问题,如多分类、代价敏感分类、不平衡分类、多标签分类、模糊分类等问题,算法还对AdaBoost系列算法进行了统一和推广.从保证组合预测函数的泛化能力出发,提出了算法中的简单预测函数可统一基于样本的单个特征来构造.理论分析和实验结论均表明,提出的系列算法的学习错误可以任意小,同时又不用担心出现过学习现象.

集成学习、机器学习、AdaBoost算法、多分类问题、泛化能力

50

TP391(计算技术、计算机技术)

四川省科技支撑计划基金项目2009SZ0214,2011GZ0171

2013-05-17(万方平台首次上网日期,不代表论文的发表时间)

共12页

861-872

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

50

2013,50(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn