Fisher准则和正则化水平集方法分割噪声图像
随着活动轮廓模型的不断成熟和发展,模型的抗噪能力又成为重要的研究课题.为了精确地分割图像的同时去除图像的噪声,针对噪声图像用非负稳健函数作为边缘保持函数,从而保证图像在去噪的过程中边缘和纹理信息不被模糊.首先创造性地将分类器中的Fisher准则函数引入到图像分割中,从分类的角度对C-V模型给出了Fisher解释.把Fisher准则作为分割的标准来建立一个基于区域和边缘相结合的同时完成去噪和分割变分水平集分割模型.其次详细讨论了该模型的数值求解方法.最后实验验证用Fisher值来衡量分割标准的理论的正确性和可靠性以及模型中正则项约束在去噪过程中的边缘保持功能.通过3组实验检验了提出的模型对噪声图像的去噪和分割比聚类算法、松弛迭代算法、Mean Shift算法有更好的效果.
Fisher准则、稳健函数、变分水平集、图像分割、去噪
49
TP391(计算技术、计算机技术)
国家”九七三”重点基础研究发展计划基金项目2010CB933903
2012-08-13(万方平台首次上网日期,不代表论文的发表时间)
共9页
1339-1347