期刊专题

基于计数的数据流频繁项挖掘算法

引用
挖掘数据流的频繁项已受到广泛关注,经典的频繁项挖掘算法尽管能够比较好地找到频繁项,但对频繁项频数的估计往往存在较大误差.SRoEC(segment rotative efficient count),SReEC(segment reserve efficient count)和RFreq(reserve frequent)算法针对该问题,继承基于计数的算法思想,将计数器进行划分并定义相应的操作,以期提高频数统计准确度并减小“噪音”影响.实验和数据分析表明,这些算法不仅能够保证频数超过阈值的数据项都能被找到,而且大大提高了频繁项频数统计的准确性.在同样空间代价下,算法无论在模拟数据集和真实数据集实验中,都表现出较高的频数准确率、较低的频数偏差率和较高的频数保有率,尤其是数据分布较平缓时,算法优势更加明显.

频繁项、Top-K、数据流、数据挖掘、频数估计

48

TP391.41(计算技术、计算机技术)

高等学校博士学科点专项科研基金项目20090071120092;IBM CRL UR基金项目JSA201007005

2012-03-16(万方平台首次上网日期,不代表论文的发表时间)

共9页

1803-1811

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

48

2011,48(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn