多维多层次网络流量异常检测研究
随着网络攻击种类和数量的增加以及网络带宽的不断增大,网络流量异常检测系统面临着误报率高和漏报率高的问题.针对该问题,首先对采集到的网络流量数据进行多维多层次在线联机分析,通过构建检测立方体数据结构并在检测立方体上针对异常检测的应用特征提出了一系列优化策略,采用最小生成树对多维度上的多查询进行优化,采用异常驱动的方法动态设定聚集的层次,来有效降低在线联机分析的时间和空间复杂度;然后在联机分析计算结果的基础上采用熵对多维多层次流量数据分布特征进行度量,获得流量数据在各个维度上的熵值序列;最后采用一类支持向量机对多维熵值序列进行分类,达到高效准确检测异常的目的.在大量实际网络流量数据集上对所提方法进行了验证并和已有方法进行了对比实验,取得了较好的实验效果.
异常检测、熵、检测立方体、在线联机分析、一类支持向量机
48
TP393.08(计算技术、计算机技术)
国家“八六三”高技术研究发展计划基金项目2011AA010702
2012-01-14(万方平台首次上网日期,不代表论文的发表时间)
共11页
1506-1516