期刊专题

一种基于主存Δ-tree的高维数据KNN连接算法

引用
KNN连接作为数据挖掘的基元,可以用来大幅度提高相似搜索、数据分析和数据挖掘的速度.到目前为止,对KNN连接的研究主要在基于磁盘系统的背景下进行,假设数据库太大以至于不能装入主存.随着RAM越来越大,价格也越来越低廉,这种假设逐渐受到挑战.因此,有必要重新对基于主存的KNN连接进行研究.在高效主存索引的基础上,采用编码解码、自底向上、深度优先遍历和剪枝等技术提出了一种新的KNN连接算法Δ-tree-KNN-Join.该算法解决了KNN连接中确定搜索半径困难的问题,提高了连接效率.在真实数据和合成聚类数据上进行了实验,结果显示Δ-tree-KNN-Join是一种有效的主存KNN连接算法.

相似连接、KNN连接、高维空间、主存、数据挖掘

47

TP311.13(计算技术、计算机技术)

黑龙江省自然科学基金项目F200601

2010-09-10(万方平台首次上网日期,不代表论文的发表时间)

共10页

1234-1243

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

47

2010,47(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn