在线自适应网络异常检测系统模型与算法
随着因特网等计算机网络应用的增加,安全问题越来越突出,对具有主动防御特征的入侵检测系统的需求日趋紧迫.提出一个轻量级的在线自适应网络异常检测系统模型,给出了相关算法.系统能够对实时网络数据流进行在线学习和检测,在少量指导下逐渐构建网络的正常模式库和入侵模式库,并根据网络使用特点动态进行更新.在检测阶段,系统能够对异常数据进行报警,并识别未曾见过的新入侵.系统结构简单,计算的时间复杂度和空间复杂度都很低,满足在线处理网络数据的要求.在DARPA KDD 99入侵检测数据集上进行测试,10%训练集数据和测试集数据以数据流方式顺序一次输入系统,在40s之内系统完成所有学习和检测任务,并达到检测率91.32% 和误报率0.43% 的结果.实验结果表明系统实用性强,检测效果令人满意,而且在识别新入侵上有良好的表现.
网络入侵检测、在线自适应、影响度函数、数据流、异常检测
47
TP393.08(计算技术、计算机技术)
国家自然科学基金项目60442002
2010-04-26(万方平台首次上网日期,不代表论文的发表时间)
共8页
485-492