期刊专题

基于搜索结果的Web预取模型研究

引用
目前搜索引擎返回的信息太多且难以根据用户的兴趣提供检索结果,而个性化推荐是一种旨在减轻用户在信息检索方面负担的有效方法.文中把内容过滤技术和文档聚类技术相结合,以改进的STC聚类方法组织搜索结果,主动推荐用户感兴趣的文档并将其中的Top-N对象预取到本地. WWW缓存中的Web文档代表了用户当前的兴趣,通过建立用户概率兴趣模型,在搜索结果STC聚类的基础上进行内容过滤.实验表明,基于搜索结果的Web预取模型具有较好的时间性能和较高的查准率.

搜索结果、聚类、概率模型、Web预取、个性化推荐

44

TP393(计算技术、计算机技术)

国家自然科学基金60472044;河南省信息网络重点开放实验室基金2006

2008-06-26(万方平台首次上网日期,不代表论文的发表时间)

共6页

377-382

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

44

2007,44(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn