期刊专题

基于局部依赖分析的特征子集选择

引用
Bayesian网络是特征子集选择的有力工具,基于Bayesian网络特征子集选择就是建立类变量的Markov毯.文中在对变量之间基本依赖关系、结点之间基本结构、依赖分离标准和Markov毯进行分析的基础上,基于局部依赖分析方法进行类变量的Markov毯学习.在一些假设下可证明学习得到的特征子集是类变量的Markov毯.相对于现有的基于Bayesian网络特征子集选择方法,该方法更加灵活、高效和可靠.

特征子集选择、Bayesian网络、Markov毯、分类器

44

TP18(自动化基础理论)

国家自然科学基金60675036;上海市重点学科建设项目P1601

2008-06-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

329-333

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

44

2007,44(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn