期刊专题

通过Boosting改进基于EP的分类器

引用
显露模式(EP)是支持度从一个数据集到另一个数据集显著提高的项集. EP具有很强的区分能力,可以建立很好的分类器.提出了一种通过Boosting改进基于EP的分类器的算法BoostEP. BoostEP使用Boosting技术建立多个基于EP的基分类器形成组合分类器,并对每个基分类器预测加权投票得到未知样本的类标号.在UCI机器学习数据库的21个基准数据集上的实验表明,BoostEP的分类准确率足以与NB,C4.5,CBA和CAEP等优秀分类法相媲美.

数据挖掘、分类、显露模式

44

TP18(自动化基础理论)

河南省自然科学基金0211050100

2008-06-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

214-218

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

44

2007,44(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn