期刊专题

基于约束的粒子群聚类算法

引用
提出了一种基于约束的粒子群聚类算法CCPSO,该算法利用粒子群的特性在数据集中有指导地随机搜索聚类中心向量, 在较少的迭代次数内确定类别数.各样本与其类别中心的均方误差作为粒子群优化的目标函数,数据集的边界作为粒子群移动的约束条件,对约束违反分情况进行惩罚.基于数据集的方差和模糊高斯函数将样本到其类别中心的距离进行模糊映射,归一化到[0,1]区间,以降低不平衡数据集的影响.聚类iris数据集和Reuters-21578文档集以验证算法的有效性,并与k-means算法进行了对照实验,在大规模数据聚类时有明显优势.

粒子群优化算法、聚类、约束优化、惩罚函数

44

TP391(计算技术、计算机技术)

国家高技术研究发展计划863计划2006AA060205;北京市教委科研项目KM200610017007

2008-06-26(万方平台首次上网日期,不代表论文的发表时间)

共6页

192-197

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

44

2007,44(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn