期刊专题

自适应K-均值聚类算法

引用
为了提高传统K-均值聚类的稳定性和可靠性,提出了一种自适应的K-均值聚类算法,其基本思想是通过分析样本集的最小树并切割其中所有超过一定阈值的较长边,根据样本集的结构特征事先自动地计算出合理的聚类个数和合理的初始聚类中心.理论分析和计算实验表明,该算法不仅能够保证聚类结果的惟一性,而且在样本集的各个聚类具有大致凸的形状时,如果类间距离明显大于类内距离,不需要人工选择参数就能直接获得较好的聚类结果.对于同样的数据集而言,即使选择了正确的聚类个数,传统的K-均值算法也可能给出不合理的聚类结果,因此自适应的K-均值聚类算法具有更好的性能.

K-均值算法、自适应、最小树、聚类个数、聚类中心

44

TP18(自动化基础理论)

北京市自然科学基金4052005;北京市属市管高等学校中青年骨干教师培养计划基金

2008-06-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

100-104

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

44

2007,44(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn