期刊专题

主动贝叶斯分类方法研究

引用
在对实际数据进行分类求解时,往往会遇到大量未带类别标注的样本,现有的经典分类方法常采用先标注缺失样本,再进行分类,存在耗时且分类精度差等问题.为此,提出一种基于主动学习思想贝叶斯分类方法RANB. 引入主动学习旨在减少评价样本所需代价,提高分类器性能. RANB方法在主动学习策略的基础上融入条件熵和分类损失的思想,可以有效抑制不确定样本所带来的误差.实验表明,该方法与朴素贝叶斯分类器等经典方法相比,在保证分类性能的前提下,可有效地减少学习所需的样本数量,尤其是对于未带类别标志的样本,更是有其优越性.

数据挖掘、机器学习、朴素贝叶斯分类器、主动学习、条件熵

44

TP18(自动化基础理论)

安徽省自然科学基金050420207

2008-06-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

47-51

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

44

2007,44(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn