期刊专题

几种典型模式识别分类器武断性的分析

引用
尽管模式识别分类方法已经发展得比较成熟,然而,诸如反向传播算法(BP)、Bayesian方法、支持向量机法(SVM)、自组织映射法(SOM)等经典分类方法,总是具有不同程度的武断特性.所谓武断,以人而言,就是针对某个问题,若决策者依据其经验作出"自信"的判决,而该判决远远超出其经验能力的水平,甚至是完全错误的,则说其决策是武断的.同样,经典的模式分类器表现出类似的武断特性.假定某个输入的特征向量,如果分类器的精度很高但经验很低,就说它在分类时是武断的.一个典型的表象是,对一个全新的、与原有训练样本差异显著的样本,传统分类器往往决然而错误地将其分成已知的类别.很显然,分类器的武断性是一种不受欢迎的性质.对多个经典分类器武断性特点进行了深入分析.

分类方法、武断性、SVM、模式识别、分类器

44

TP391.41(计算技术、计算机技术)

国家重点实验室基金9140C8001020603

2008-06-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

32-36

暂无封面信息
查看本期封面目录

计算机研究与发展

1000-1239

11-1777/TP

44

2007,44(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn