期刊专题

10.11897/SP.J.1016.2023.02476

基于M-estimator函数的加权深度随机配置网络

引用
深度随机配置网络(Deep Stochastic Configuration Network,DSCN)是一种增量式随机化学习模型,具有人为干预程度低、学习效率高和泛化能力强等优点.但是,面向噪声数据回归与分析时,传统的DSCN易受到异常值影响,从而降低了模型的泛化性.因此,为提高噪声数据回归的精度和鲁棒性,提出了基于M-estimator函数的加权深度随机配置网络(Weighted Deep Stochastic Configuration Networks,WDSCN).首先,选取 Huber 和Bisquare 2个常用的M-estimator函数计算样本权重,利用加权最小二乘法和L2正则化策略替代最小二乘来更新WDSCN输出权重,以降低异常值对WDSCN的负面影响;其次,为提高WDSCN模型表征能力,设计了一种随机配置稀疏自编码器(Stochastic Configuration Sparse Autoencoder,SC-SAE),SC-SAE 基于 DSCN 其独有的监督机制随机分配输入参数,采用基于L1正则化的目标函数,并利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)计算SC-SAE输出权重;然后,为获取有效的特征表示,利用SC-SAE生成特征的随机性和多样性,采用多个SC-SAE进行特征学习并融合,用于WDSCN模型训练;最后,在真实数据集上的实验结果表明,WDSCN-Huber、WDSCN-Bisquare 相比于 DSCN、SCN 以及 RSC-KDE、RSC-Huber、RSC-IQR、RSCN-KDE、WBLS-KDE和RBLS-Huber等加权模型具有更高的泛化性能和回归精度.

深度随机配置网络、异常数据、鲁棒性、回归、随机神经网络

46

TP183(自动化基础理论)

2023-11-21(万方平台首次上网日期,不代表论文的发表时间)

共12页

2476-2487

相关文献
评论
暂无封面信息
查看本期封面目录

计算机学报

0254-4164

11-1826/TP

46

2023,46(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn