期刊专题

10.11897/SP.J.1016.2023.02431

视觉身份隐私保护:人脸匿名化研究方法

引用
随着深度学习的广泛应用,身份伪造技术的发展越来越迅猛.各种伪造的图像和视频在社交媒体平台上的传播直接影响了公共隐私安全,人脸身份隐私保护已成为当前研究热点.本文从基于图像和视频两个方面的匿名化方法阐述和归纳了人脸隐私保护研究现状,并将人脸图像匿名化方法从图像语义修改、图像语义保持、视觉可恢复以及深度学习过程中的人脸隐私保护四个方面进行分类,将人脸视频匿名化方法从聚焦面部区域隐私的视频匿名化方法和面向生物特征隐私的视频匿名化方法两个方面进行分类.在此基础上,本文进一步介绍目前广泛使用的数据集及匿名算法评价标准,分析现有人脸匿名技术生成人脸图像的可靠性和实用性,并对此领域的未来研究进行了展望.

深度学习、身份伪造、隐私保护、人脸图像匿名、人脸视频匿名、公共安全

46

TP391(计算技术、计算机技术)

陕西省重点研发计划;广西自然科学基金项目

2023-11-21(万方平台首次上网日期,不代表论文的发表时间)

共22页

2431-2452

暂无封面信息
查看本期封面目录

计算机学报

0254-4164

11-1826/TP

46

2023,46(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn