视觉身份隐私保护:人脸匿名化研究方法
随着深度学习的广泛应用,身份伪造技术的发展越来越迅猛.各种伪造的图像和视频在社交媒体平台上的传播直接影响了公共隐私安全,人脸身份隐私保护已成为当前研究热点.本文从基于图像和视频两个方面的匿名化方法阐述和归纳了人脸隐私保护研究现状,并将人脸图像匿名化方法从图像语义修改、图像语义保持、视觉可恢复以及深度学习过程中的人脸隐私保护四个方面进行分类,将人脸视频匿名化方法从聚焦面部区域隐私的视频匿名化方法和面向生物特征隐私的视频匿名化方法两个方面进行分类.在此基础上,本文进一步介绍目前广泛使用的数据集及匿名算法评价标准,分析现有人脸匿名技术生成人脸图像的可靠性和实用性,并对此领域的未来研究进行了展望.
深度学习、身份伪造、隐私保护、人脸图像匿名、人脸视频匿名、公共安全
46
TP391(计算技术、计算机技术)
陕西省重点研发计划;广西自然科学基金项目
2023-11-21(万方平台首次上网日期,不代表论文的发表时间)
共22页
2431-2452