基于深度学习的图像-文本匹配研究综述
图像-文本匹配任务旨在衡量图像和文本描述之间的相似性,其在桥接视觉和语言中起着至关重要的作用.近年来,图像与句子的全局对齐以及区域与单词的局部对齐研究方面取得了很大的进展.本文对当前先进的研究方法进行分类和描述.具体地,本文将现有方法划分为基于全局特征的图像-文本匹配方法、基于局部特征的图像-文本匹配方法、基于外部知识的图像-文本匹配方法、基于度量学习的图像-文本匹配方法以及多模态预训练模型,对于基于全局特征的图像-文本匹配方法,本文依据流程类型划分为两类:基于嵌入的方法和基于交互的方法;而对于基于局部特征的图像-文本匹配方法,依据其交互模式的不同,则被细分为三类:基于模态内关系建模的方法、基于模态间关系建模的方法以及基于混合交互建模的方法.随后,本文对当前图像-文本匹配任务的相关数据集进行了整理,并对现有方法的实验结果进行分析与总结.最后,对未来研究可能面临的挑战进行了展望.
图像-文本匹配、跨模态图像检索、多模态预训练模型、综述、深度学习、人工智能
46
TP391(计算技术、计算机技术)
2023-11-21(万方平台首次上网日期,不代表论文的发表时间)
共30页
2370-2399