无监督的领域自适应机器阅读理解方法
受益于面向大规模语言学资源的深度学习,预训练语言模型有着较强的语义表示学习能力.其能够借助特定任务场景下的迁移学习,在优化模型性能方面提供重要的支持.目前,预训练语言模型已被引入机器阅读理解研究领域,并展现了较好的优化能力.然而,针对特定领域的数据,微调后的预训练模型仍存在领域适应性问题,即无法解决未知领域中新颖的语言现象.为此,本文提出了一种融合迁移自训练和多任务学习机制的无监督领域自适应模型.具体而言,本文结合生成式阅读理解网络和掩码预测机制形成了多任务学习框架,并利用该框架实现跨领域(源领域至目标领域)的无监督模型迁移技术.此外,本文设计了文本规范化和迁移自训练模式,以此促进目标领域的数据分布适应源领域的数据分布,从而提高模型迁移学习的质量.本文将TweetQA作为目标领域数据集,将SQuAD、CoQA和NarrativeQA作为源领域数据集进行实验.实验证明,本文所提方法相较于基线模型有显著提升,在BLEU-1、METEOR和ROUGE-L指标上分别提升了至少2.5、2.7和2.0个百分点,验证了其优化领域适应性的能力.
无监督领域自适应、迁移自训练、多任务学习、生成式阅读理解、掩码预测
45
TP391(计算技术、计算机技术)
国家重点研发计划;国家自然科学基金;国家自然科学基金
2022-10-25(万方平台首次上网日期,不代表论文的发表时间)
共18页
2133-2150