期刊专题

10.11897/SP.J.1016.2022.01517

基于高效的多尺度特征提取的轻量级语义分割

引用
近来移动端视觉应用的发展激发了对轻量级语义分割技术的需求.尽管取得了十分辉煌的成就,当前轻量级语义分割模型仍存在精度不足、参数过多的问题.本文的目的在于开发一个具有少量参数的高精度分割模型.为此,本文基于以下观察提出了一种新的轻量级分割模型MiniNet:(1)语义分割依赖于多尺度特征学习;(2)下采样是加速网络推理和扩大卷积感受野的最有效方法;(3)网络深度和卷积通道数之间的良好平衡对于轻量级模型至关重要.具体来说,MiniNet采用空间金字塔卷积(Spatial Pyramid Convolution,SPC)模块和空间金字塔池化(Spatial Pyramid Pooling,SPP)模块作为多尺度特征学习的基本单元.此外,MiniNet将大多数网络层和操作放在较小的尺度上,即原始图像分辨率的1/16,而不是先前模型中常用的1/8尺度.MiniNet还设法平衡网络深度和卷积通道数.在没有ImageNet预训练的情况下,MiniNet在Cityscapes测试数据集上仅以211K参数和94.3fps的速度即可达到66.3%的mloU.

语义分割、轻量级语义分割、快速语义分割、图像分割、轻量级网络

45

TP391(计算技术、计算机技术)

新一代人工智能重大项目;国家自然科学基金;教育部指导高校科技创新规划项目

2022-07-29(万方平台首次上网日期,不代表论文的发表时间)

共12页

1517-1528

相关文献
评论
暂无封面信息
查看本期封面目录

计算机学报

0254-4164

11-1826/TP

45

2022,45(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn