期刊专题

10.11897/SP.J.1016.2022.00935

面向小样本约束的域适应分类算法

戴宏郝轩廷盛立杰苗启广
西安电子科技大学;
引用
(0)
收藏
近年来,人工智能的相关应用被越来越细化到不同的应用场景,而对不同的应用场景都进行相应的数据收集,模型训练,模型调优等步骤需要消耗大量的时间精力会严重影响人工智能技术应用的效率.因此如何基于现有的成熟的训练过的模型迁移到其他应用场景是当前应用人工智能技术的关键问题.域适应算法主要研究将源域模型有效地迁移到目标域,这为上述问题提供了一个重要的解决思路.本文提出小样本对抗判别域适应算法,相对于无监督域适应算法能够在更严格的约束下-仅需要少量的目标域样本,在标准数据集上取得了优于对抗判别域适应算法(Adversarial Discriminative Domain Adaptation,ADDA)算法的表现,…展开v

小样本、域适应、分类、深度学习、迁移学习

45

TP18(自动化基础理论)

国家重点研发计划;国家自然科学基金;国家自然科学基金;国家自然科学基金;广西可信软件重点实验室研究课题;青岛市科技计划

2022-05-11(万方平台首次上网日期,不代表论文的发表时间)

共16页

935-950

暂无封面信息
查看本期封面目录

计算机学报

EICSTPCD北大核心

0254-4164

11-1826/TP

45

2022,45(5)

月卡
- 期刊畅读卡 -
¥68
季卡
- 期刊畅读卡 -
¥128
年卡
- 期刊畅读卡 -
¥199
年卡
- 超级文献套餐 -
¥499
查重
- 个人文献检测 -
快速入口
开通阅读并同意
《万方数据会员(个人)服务协议》

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn